$({\rm EC}+\beta^+)$ decays of the $11/2^-$ isomer and $1/2^+$ ground state of $^{143}{\rm Dy}$

S.-W. Xu^a, Y.-X. Xie, Z.-K. Li, X.-D. Wang, B. Guo, C.-G. Leng, C.-F. Wang, and Y. Yu

Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PRC

Received: 20 August 2002 / Revised version: 22 October 2002 / Published online: 11 February 2003 – © Società Italiana di Fisica / Springer-Verlag 2003 Communicated by D. Schwalm

Abstract. The $1/2^+$ ground state and a $11/2^-$ isomer of very neutron-deficient isotope ¹⁴³Dy were produced by irradiation of an enriched target of ¹⁰⁶Cd with ⁴⁰Ca and studied by using a helium-jet fast tape-transport system in combination with proton- γ , X- γ and γ - γ coincidence measurements. A simple (EC + β^+) decay scheme of ^{143m}Dy with a half-life of 3.0(3) s and a tentative (EC + β^+) decay scheme of ^{143g}Dy with a halflife of 5.6(10) s are proposed. As a by-product, the 347- and 545-keV γ transitions in ¹³⁸Sm following the β -delayed proton emission of ¹³⁹Gd decay and the 323-keV γ transition in ¹³⁹Eu following the β -delayed proton emission of ¹⁴⁰Tb decay could be observed for the first time.

PACS. 23.40.-s Beta decay; double beta decay; electron and muon capture – 21.10.Tg Lifetimes – 27.60.+j $90 \le A \le 149$

The first observation of the β -delayed proton decay of $^{143}\mathrm{Dy}$ with proton energies of 2.0 MeV to 6.4 MeV was reported by Nitschke *et al.* in 1983 [1]. However, three different values for its half-life, $4.1(3) \le [1]$, $3.2(6) \le [2]$ and 3.8(6) s [3], were given by the same group. Recently, using an improved technique the result 3.2(6)s [2] of half-life was ascribed to the decay of the $1/2^+$ ground state of 143 Dy, and a possible $11/2^{-}$ isomer with an excitation energy of 310.7 keV was suggested to be populated in addition [4]. This assignment does not agree with the ground-state spin and parity of $3/2^-$ predicted for ¹⁴³Dy given by Möller *et* al. [5]. From a systematic point of view, however, the $1/2^+$ ground state and the $11/2^-$ isomer have already been observed in the isotopes ¹⁴⁷Dy and ¹⁴⁵Dy as well as in the isotones ¹⁴¹Gd and ¹³⁹Sm. Using the Weisskopf estimate, the E5 transition probability from the $11/2^{-1}$ isomer to the $1/2^+$ ground state of ¹⁴³Dy is estimated to be about 10^{-8} /s. It is thus feasible to have an (EC + β^+) decay directly from the $11/2^-$ isomer with a considerable long half-life. This work attempts to study the decay properties of both the $11/2^{-}$ isomer and the ground state of ¹⁴³Dy.

The experiment described here was carried out at the Sector-Focusing Cyclotron in the Institute of Modern Physics, Lanzhou, China. The sketch of the experimental set-up is shown in fig. 1. A 232-MeV 40 Ca¹²⁺ beam from the cyclotron entered a target chamber filled with 1 bar helium, passed through a 1.89 mg/cm² thick Havar window,

a 4.2 cm thick layer of helium gas and an aluminum degrader, finally bombarded in turn four 106 Cd targets (75% enriched) with a thickness of about 1.8 mg/cm^2 each. The four targets were uniformly mounted on a copper wheel surrounded by a cooling device. The target wheel rotated by 90° once every 150 seconds. The beam energy at target center was 182 MeV. The beam intensity was about $0.5 \text{ e}\mu\text{A}$. The ¹⁴³Dy, ¹³⁹Gd and ¹⁴⁰Tb were produced via the 2pn, α 2pn and α pn evaporation channels, respectively. We used a helium jet in combination with a tapetransport system to periodically move the radioactivity into a shielded counting room. PbCl₂ was used as aerosol at 430 °C. Two different experimental arrangements were used. One was the proton-gamma coincidence measurements for the study of the β -delayed proton decay [7–9], the other was the X- γ and γ - γ coincidences for the study of the EC/ β^+ -delayed γ -decay. In the proton-gamma coincidence measurements, the collection time, tape moving time, waiting time, and accumulation time were 5.00, 0.15, 0.15, and 4.85 s, respectively. Two 570 mm² \times 350 μ m totally depleted silicon surface barrier detectors were used for proton measurements, and located on two opposite sides of the movable tape. Behind each silicon detector a coaxial HpGe(GMX) was placed to observe $\gamma(X)$ -rays. The energy and time spectra of $\gamma(X)$ -ray and proton were taken in coincidence mode. In the X- γ and γ - γ coincidence measurements, normally the collection time, tape moving time, waiting time, and accumulation time were 8.30, 0.15, 0.30, and 8.00 s, respectively. Two coaxial HpGe(GMX)

^a e-mail: xsw@ns.lzb.ac.cn

Fig. 1. The sketch of the experimental set-up for the X- γ and γ - γ coincidence measurements.

Table 1. Calculated relative branching ratios to different final states in the daughter nucleus ¹⁴²Gd via β -delayed proton decays of both the $11/2^-$ isomer and $1/2^+$ ground state of ¹⁴³Dy. $B_p = 1.12$ MeV.

Initial spin and	Relative branching ratios to the final state $(\%)$				
parity of ¹⁴³ Dy	Ground state (0^+)	$515 \text{ keV} \\ (2^+_1)$	980 keV (2_2^+)	$1209 \text{ keV} (4^+)$	$2003 \text{ keV} \\ (6^+)$
$\frac{1/2^+}{11/2^-}$	72 1	23 32	5 8	$\begin{array}{c} \sim 0 \\ 53 \end{array}$	$\begin{array}{c} \sim 0 \\ 6 \end{array}$

detectors were used as γ -ray detectors and a HpGe planar detector was employed to detect X-rays. In order to improve the energy resolution for low-energy γ -rays, in some runs a second HpGe planar detector was used instead of a coaxial HpGe(GMX) detector. The energy and time spectra of γ - and X-rays were taken in single and coincidence modes.

The measured $\gamma(X)$ -ray spectrum gated on 2.3– 6.0 MeV protons is shown in fig. 2. All intense γ lines in fig. 2 could be assigned to their β -delayed proton precursors except the X-rays and the 511-keV γ -ray. Among them, the 515-keV γ line was assigned to the $2^+_1 \rightarrow 0^+({\rm ground\ state})$ transition in the daughter nucleus $^{142}{\rm Gd}$ [10] of the proton emitter $^{143}{\rm Tb}$ produced via the EC/ β^+ decay of $^{143}{\rm Dy}$, and the 980-, 465-, 694-, and 794-keV γ lines in fig. 2 were attributed to the $2^+_2 \rightarrow 0^+, 2^+_2 \rightarrow 2^+_1, 4^+ \rightarrow 2^+_1$, and $6^+ \rightarrow 4^+$ transitions in $^{142}{\rm Gd}$ [10], respectively. In addition, the 347- and 545-keV γ lines were assigned to the $2^+ \rightarrow 0^+({\rm ground\ state})$ and $4^+ \rightarrow 2^+$ transitions in the daughter nucleus $^{138}{\rm Sm}$ [11] and to result from the EC/ β^+ -delayed proton decay of $^{139}{\rm Gd}$. The 323-keV γ line was assigned to the $15/2^- \rightarrow 11/2^-$ transition in the daughter nucleus $^{139}{\rm Eu}$ [12] populated via the (EC+ β^+)-delayed proton decay of $^{140}{\rm Tb}$ for

Fig. 2. The measured γ -ray spectrum in coincidence with 2.3- to 6.0-MeV protons. The intense peaks are labeled with their energies in keV and their β -delayed proton precursors.

the first time. This observation indicates that the groundstate spin of ¹⁴⁰Tb should be ≥ 5 which is consistent with our previous assignment of 7⁺ [13].

The proton energy spectra gated on the 515- and 694-keV γ lines are shown in fig. 3. The components with energies below 2.0 MeV in the spectra were attributed to the pile-up of positrons in the silicon detectors. \overline{E}_p in fig. 3 stands for the centroid of the energy spectrum. The decay curves of the 515- and 694-keV γ lines coincident with 2.3–6.0 MeV protons are shown in fig. 4. The relative branching ratios to different final states in the daughter nucleus 142 Gd via the β -delayed proton decay of both the $11/2^{-}$ isomer and $1/2^{+}$ ground state of ¹⁴³Dy were calculated by using a revised statistical model [14, 15]; the results are listed in table 1. Based on those calculations, the $2^+_1 \rightarrow 0^+$ transition in ¹⁴²Gd, *i.e.* the 515-keV γ line in fig. 2, is fed by the β -delayed proton decay of both the $1/2^+$ ground state and the $11/2^-$ isomer of ¹⁴³Dy, while the $4^+ \rightarrow 2^+_1$ transition in ¹⁴²Gd, *i.e.* the 694-keV γ transition in ¹⁴²Gd, *i.e.* the fourth of γ transition in ¹⁴²Gd, *i.e.* the fourth of γ transition in ¹⁴²Gd, *i.e.* the fourth of γ transition is γ transition in ¹⁴²Gd, *i.e.* the fourth of γ transition is γ transition in for γ sition in fig. 2, is caused by the $11/2^-$ isomer decay of ¹⁴³Dy only. Comparing the calculated relative branching ratios in table 1 with the observed relative intensities of 515-keV and 694-keV γ peaks in fig. 2, the components in the 515-keV γ transition from the β -delayed proton decay of both $11/2^-$ isomer and $1/2^+$ ground state were estimated to be almost equal, *i.e.* 50% each. Therefore, from the decay curve of the 694-keV γ line in fig. 4 the half-life of the $11/2^{-}$ isomer of ¹⁴³Dy can be extracted as 3.0 ± 0.5 s, and then from the decay curve of the 515-keV γ line in fig. 4 the half-life of the $1/2^+$ ground state of $^{143}\rm{Dy}$ can be estimated as 6 ± 2 s.

Based on the X- γ coincidences and in-beam study of ¹⁴³Tb [16], the 521.1- and 541.5-keV γ lines, which correspond to the $13/2^- \rightarrow 11/2^-$ and $15/2^- \rightarrow 11/2^-$ tran-

Table 2. The relative intensities, coincidence relationships and half-lives of γ transitions in the (EC + β^+) decay of ¹⁴³Dy.

$E_{\gamma} \; (\mathrm{keV})$	I_{γ}	Coincident relations	Half-life
113.7(3)	34(8)	253.3	
142.8(3)	46(7)	145.0	$2.9(2) \ s$
145.0(3)	21(5)	142.8	
177.4(3)	62(7)	577.9, 583.7	$5.0(8) \ s$
253.3(3)	220(25)	113.7, 428.2, 440.3, 533.5	$5.7(9) \ s$
428.2(4)	46(9)	253.3	
440.3(4)	56(11)	253.3	
521.1(4)	58(11)		
533.5(4)	23(7)	253.3	
541.5(4)	100		3.1(3) s
577.9(4)	36(9)	177.4	
583.7(4)	100(14)	177.4	

sitions in 143 Tb, were assigned to the decay of the $11/2^{-1}$ isomer of ¹⁴³Dy. With the aid of their excitation functions (fig. 5), also the three γ -rays of 142.8, 177.4 and 253.3 keV observed in the γ spectrum gated on the Tb- K_{α} X-ray were attributed to the $(EC + \beta^+)$ decay of ¹⁴³Dy. The relative intensities and coincidence relationships of all γ transitions associated with the above five intense γ lines are listed in table 2. According to their coincidence relationships and their half-lives (see also fig. 6), the γ lines in table 2 except the 521.1- and 541.5-keV were divided into three groups: 1) (142.8–145.0)-keV γ lines with a half-life of 2.9(2) s; 2) (177.4–577.9–583.7)-keV γ lines with a half-life of 5.0(8) s; and 3) (113.7–253.3–428.2– 440.3–533.5)-keV γ lines with a half-life of 5.7(9) s. In order to be consistent with the extracted half-lives in the β -delayed proton measurements, the first group of γ lines

Fig. 3. Observed energy spectra of β -delayed protons gated by the 515-keV and 694-keV γ -rays.

Fig. 4. The decay curves of the 515- and 694-keV γ lines coincident with 2.3–6.0 MeV protons.

Fig. 5. The excitation functions of typical intense γ lines in the decays of ¹⁴³Dy and ¹⁴⁴Dy.

Fig. 6. The decay curves of the intense γ lines in the (EC + β^+) decay of ¹⁴³Dy.

together with the 521.1- and 541.5-keV transitions were attributed to the (EC + β^+) decay of the $11/2^-$ isomer of ¹⁴³Dy, while the second and third groups are tentatively assigned to the (EC + β^+) decay of the $1/2^+$ ground state of ¹⁴³Dy. It should be noted that the 533.5-keV γ line (together with 10% intensity of 253.3-keV γ line) could eventually belong to the 253.7–534.5 keV cascade reported by Espinoza-Qinnoens *et al.* [17] to depopulate a $13/2^-$ state in ¹⁴³Tb. However, the intensity of the 533.5-keV γ line is too weak to determine its half-life. Further experimental studies are necessary to place the γ lines observed in the X- γ coincidences in the level scheme of ¹⁴³Tb.

A simple (EC + β^+) decay scheme assigned to the $11/2^-$ isomer of ¹⁴³Dy and a tentative (EC + β^+) decay scheme proposed to the $1/2^+$ ground state are shown in fig. 7(a) and fig. 7(b), respectively. From the half-lives observed from the 142.8-keV and the 541.5-keV transitions, an average value of 3.0(2) s for the half-life of the $11/2^-$ isomer of ¹⁴³Dy is deduced, while a half-life of 5.3(6) s is determined for the $1/2^+$ ground state of ¹⁴³Dy from the decay curves of the 177.4-keV and 253.3-keV transitions.

Fig. 7. (a) The proposed $(EC + \beta^+)$ decay scheme of the $11/2^-$ isomer of ¹⁴³Dy. (b) The tentatively proposed $(EC + \beta^+)$ decay scheme of the $1/2^+$ ground state of ¹⁴³Dy.

Both half-lives are in agreement with the respective half-lives extracted from the β -delayed proton measurements. Average values of 3.0 \pm 0.3 s and 5.6 \pm 1.0 s are finally adopted for the half-lives of the $11/2^-$ isomer and the $1/2^+$ ground state of ¹⁴³Dy, respectively.

This work was supported by the Major State Basic Research Development Program (G2000077402), the National Natural Science Foundation of China (19975057 and 10005011), and the Chinese Academy of Sciences.

References

- J.M. Nitschke, M.D. Cable, W.-D. Zeitz, Z. Phys. A **312**, 265 (1983).
- J.M. Nitschke, P. Wilmarth, P.K. Lemmertz *et al.*, Z. Phys. A **316**, 249 (1984).
- J.M. Nitschke, P. Wilmarth, J. Gilat et al., Proceedings of the 5th International Conference on Nuclei far from Stability, Rossean Lake, Ontario, Canada 1987, edited by I.S. Towner (1988) p. 697.
- 4. J.K. Tuli, Nucl. Data Sheets 94, 771 (2001).
- P. Möller, J.R. Nix, K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).
- W. Nazarewicz, J. Dudek, R. Bengtsson *et al.*, Nucl. Phys. A **435**, 397 (1985).
- S.-W. Xu, Z.-K. Li, Y.-X. Xie *et al.*, Phys. Rev. C **60**, 061302(R) (1999).
- S.-W. Xu, Y.-X. Xie, Z.-K. Li *et al.*, Z. Phys. A **356**, 227 (1996).
- Z.-K. Li, S.-W. Xu, Y.-X. Xie *et al.*, Phys. Rev. C 56, 1157 (1997).
- 10. J.K. Tuli, Nucl. Data Sheets 89, 779 (2000).
- 11. J.K. Tuli, Nucl. Data Sheets **69**, 141 (1993).
- 12. T.W. Burrows, Nucl. Data Sheets 92, 759 (2001).
- Xu Shuwei, Xie Yuanxiang, Yu Yong *et al.*, Eur. Phys. J. A 8, 435 (2000).
- P. Hornshoj, K. Wilsky, P.G. Hansen *et al.*, Nucl. Phys. A 187, 609 (1972).
- 15. J.C. Hardy, Phys. Lett. B 109, 242 (1982).
- 16. J.K. Tuli, Nucl. Data Sheets **94**, 765 (2001).
- F.R. Espinoza-Quinones, M.A. Rizzutto, E.W.Cybulska *et al.*, Phys. Rev. C **60**, 054304 (1999).